alis.link_analysis.idealized_page_rank
alis.link_analysis.idealized_page_rank#
- alis.link_analysis.idealized_page_rank(M, tol=1e-06, max_iter=100)[source]#
Compute the Idealized PageRank (without Taxation) of a given Transition Matrix
- Parameters
- Mnumpy array
Transition Matrix: Array of shape (n, n), where n is the number of nodes in the network
- tolfloat
Tolerance: Iteration stops if the distance between previous and updated PageRank vectors goes below this value
- max_iterinteger
Maximum number of iterations
- Returns
- vnumpy array
Vector of size n containing the ordinary PageRank values